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IMTRODUCT1ON

Despite its obvious appeal and widespread application, the
inductively coupled plasma (ICP) ordinarily requires for
successful operation unfortunately high radiofrequency power
input and coolant argon flows., Such high~power (>1.5kW) plasmas
require bulky, expensive instrumentation, can generate substantial
radiofrequency interfetence and, if operated incorrectly, can be
hazardous. Similarly, elevated argon consumption rates (>15 L/min)
are not only costly, but necessitate either frequent changes of
gas cylinders or the availability of a liquid-argon dewar.

The high cost of argon is particularly troublesome and has
urged many investigators to consider the use of alternative gases
to support the ICP, In North America, where argon is relatively
inexpensive, it can be calculated that the annual cost of each
L/min increment in argon flow is approximately $1000. That is, a

conventional plasma which requires for its operation 18L/min

‘'will cost approximately $18000 per year for operation, By contrast,

a low-flow plasma that consumes only 5L/min will require only $5000.
Clearly, strong economic urgency drives the development of high-
efficiency ICP systems.

Over the past several years, a number of investigators have
sought to reduce the gas flow and power requirements of the ICP
through modification of the torch required to sustain the discharge.
These modifications include shrinking the torch's size, optimising
torch geometries and operating conditions, and employinpg alternative
cooling using, for example, water or high-velocity jets of air. In
this paper, these alternative approaches to the development of a
high-efficiency ICP will be reviewed and assessed and a view toward
the future offered. The review will not attempt to be

comprehensive, but will include a sampling of the alternative
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approaches and a discussion of the studies which the author feels

are particularly significant. The discussion will not proceed
chronologically, but will instead examine the above-mentioned

alternative approaches individually.

MINIATURISED ICP SYSTEMS

Perhaps the most straightforward approach to reducing gas
flow and power in an ICP is simply to reduce the plasma% dimensions,
1f it can be assumed that 1CP performance is dependent on power
density in the discharge, a satisfactory unit could be designed for
low-power operation just by configuring a proportionally smaller
torch, Presumably, necessary gas flow would also be reduced. Such
an approach would yield not only a more efficient ICP in terms of
required gas flows and radiofrequency powers, but might also result
in less atomic dilution, a factor which could enhance sensitivity
and simplify the interfacing of the plasma to ion-detection systems.
The first description of an analytically effective miniaturised torch
(1) involved a rather modest reduction in the torch's dimensions; its
size and operating requirements are listed in Table 1 along with those
of other systems to be discussed in this narrative. The miniaturised
torch had a diameter approximately 2/3rds that of the conventional
(18mm i.d.) torch and, interestingly, required approximately 2/3rd the
radiofrequency power to provide similar analytical performance. From
the original study (1) and later reports (2), the "mini-ICP" exhibited
the same detection limits and working-curve limearity expected from a
conventional-sized ICP. In later studies on the same system, it was
shown thatvaporization and ionization interferences (3) were also
minimal and that the background emission spectrum from the miniCP (4)
was just as structured and troublesome as that from the conventional

source, In short, the mini-ICP can be viewed and utilised exactly

as would the conventional source, but can be operated at 2/3rds of the




"t‘, radiofrequency power and at a covolant flow of less than &L/min (2),
Dcetection limits, interfcerences, and other figures-of-merit of the
mini-ICP are collected in Tables 2-3, where they are compared with
those obtained from other high-efficiency ICP systems,

In tue course of the development of reduced-size torches, an

interesting and useful aid to torch development was described by

Sexton, et al. (5). In the test described, flowing water was

js: directed into each of the gas inlet ports of the constructed ICP

.‘\: torch; from the pattern of the exiting water flow, the uniformity

ﬁ' and concentricity of the quartz tubes in the torch could be evaluated.

o For example, water directed into the "coolant" (outer) argon inlet

;:‘..: produced in a well-constructed torch a flat "fan" of water issuing

.‘:. from the top of the torch., The flatness of the "fan" indicated the

.‘j‘-' swirl velocity in the torch, whereas the symmetry of the "fan"

2rs revealed tube concentricity and uniformity.

:3‘5 A further step in reducing ICP size was described by Allemand

i::', et al. (6), who tested not only a 13-mm torch like the "mini-ICP", but also a
»

"y 9-mm device, Both torches utilised a smooth contour of the

!' 0] flared intermediate tube and sharp torch edges for uninterrupted

\: gas flow. The entire torch was constructed of boron nitride,

\: enabling it to be precisely machined rather than glass-blowm,

'{ . Reported detection limits for the 13-mm torch were, on the average,
.. even better than those reported in the "“mini-ICP" study (1). However,

! the interference from easily ionized elements (EIE) was slightly
worse than exhibited by a conventional-sized unit, As shown in

Table 1, the system was operated on slightly higher argon flows than

was the "mini-ICP",

2‘ Allemand, et al., (6) indicated stability problems with a 9-mm

"} (i.d.) torch and found that it required at least 700W for operation,
.- In contrast, the study by Weiss, et al., (7) used the water-flow
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testing approach (9 to develop an analyticaily useful "micro-icp"
of 9mm in inner diameter which could operate on less than 500W of
RF power and 7L/min of total argon flow. Like the conventional and
"mini" ICP, the "micro'" torch yielded detection limits, working
curves, and most other analytical characteristics expected of the
ICP. Although the temperature of the micro-plasma was somewhat
lower (4000K) than reported for other ICP discharges, the unit was
shown useful for the analysis of real samples;refer to Tables 2-3
for a comparison of analytical characteristics of the various

w iniaturised plasmas.

Unfortunately, both vaporization interferences and those
caused by an EIE are somewhat greater in the 9-mm plasma than in
either the "mini-ICP" or in a conventional unit. The reason for
this somewhat reduced performance lies presumably in the necessary
interaction which occurs between sample aerosol and radiofrequency
energy coupling into such a small plasma. In all radiofrequency
discharges, power is coupled into the “skin" of the discharge,
with coupling decreasing exponentially with distance from the discharge
boundary. This feature is ordinarily characterised by the "skin
depth”, which is the distance from the plasma boundary where energy
coupling has fallen to 0,37 of its maximum value. For plasmas like
the ICP, the skin depth lies reportedly between 2mm (7) and 3mm (8).

Because energy coupling is minimal in the centre of a large
ICP, aerosol can be directed into it with minimal effect on the
energy~coupling process. Consequently, changes in aerosol flow or
in sample composition should produce few matrix interferences.
In contrast, extremely small discharges like the "micro-ICP" could
be greatly upset by aerosol introduction, Even if the skin depth
were 2mm and aerosol were restricted to a 1-mm channel in the

discharge centre, some 137 of the plasmaﬁ energy coupling would
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:5‘:‘2 still be affected.
:\-:::' Clearly, unless the skin depth of the ICP can be altered,
A there is little prospect of successfully reducing further the
}::: plasma’s dimensions. In turn, skin depth can be reduced only by
: j-' altering the plasma’s impedance, an unlikely event, or by raising
) .: the operating frequency of the ICP., Importantly, it has recently
-‘ been shown that a 9mm 1CP can be operated at 100MHz successfully
-1':J and with minimal matrix interferences{9).Clearly, this study heralds
;::j one of the important new directions which high-efficiency ICP
*':j systems might take.
" ' HIGH-EFFICIENCY ICP TORCHES
:' Historically, some of the most dramatic reductions in RF
'.::4 power and argon flow required to sustain the ICP were made by
modifying the torch used to support the plasma. In fact, the work
':.:\-" by Allemand and Barnes (10) established the basis for even some of
:-:: the most recent improvements in low-flow torch design. In that
E::: study, a parameter termed the "configuration ratio" was defined as
N an indicator of torch performance. The configuration ratio is simply the
::-{ ratio of the diameters of the intermediate and outer tubes in the
:.j plasma torch, It was shown then and in later studies (6,11) that a
l};‘ large configuration ratioc enabled a plasma to be supported on
i unusually low gas flows, Later, the same research group (12)
':' demonstrated the importance of a constricted port in the coolant-
::::- gas inlet tube of an ICP torch. Such a constriction increases
‘;::: the swirl velocity of coolant argon, stabilises the plasma, and
: promotes easier ignition. These design features were, not
:-;‘\' surprisingly, incorporated into a number of the miniatunsed ICP
v
22,: systems described in the previous section and also in the design
.J'_-‘ of high - efficiency torches for use with molecular gases (13),
N -’
.t:
v
B
oy
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Other investigators who have recently described modified torches

for low-power or low-flow operation include Lowe (14) and

Demers and Allemand (15). Lowe (14) employed a thick outer tube

««. at a rather large distance from the intermediate tube in an ICP

AR

';:: that required only 5L/min for operation, The system by Demers and
N

Allemand (15) can operate at unusually low argon flows and applied

RF powers because it was designed for use in an atomic fluorescence

.,-‘hs‘ instrument. Consequently, the plasma is not required to ionise or
; .:::: excite sample atoms,

§§ Perhaps the most dramatic improvement in operating conditions
‘ ‘ through torch design was reported by Rezaaiyaan et al. (11). Using
." :;_-: as a guide "plasma stability" curves, a number of physical dimensions

'_'_i"' of an 18-mm ICP were optimized to enable operation at unusually low

.i": power and gas flow, Such plasma stability curves are generated by
Kl reducing slowly either the applied RF power or coolant gas flow in an

\'::\ ignited, stable ICP, The flow or power where the plasma extinguishes
-"E‘-_: is then noted and the group of minimal flow/power points so
"::7': obtained is plotted on a power/flow axis system. The resulting
h . ‘ "plasma stability” curve, which in an optimized plasma fbllows both

iﬂ“ axes remarkably closely, delineates boundaries of stable plasma
:;E operation. The final optimized torch (11) could suystain a stable plasma

‘ ,f: alternatively at a coolant flow of S5L/min and an RF power of 125W or

: a coolant flow of 3.5L/min and an RF power of 500W. Features of the
::;: torch are outlined in Table 1 and its analytical characteristics
)

;ﬁ' summarised in Tables 2-3, Importantly, the optimized torch exhibited

:;:;2 the same stability when a 1% NaCl solution was introduced into it and
- could also be employed for the analysis of real samples. Recent

':;:E:f results from the same laboratory (16) reveal that optimal operation

::,::3 occ' 8 at an applied RF power of 350W and a coolant flow of S5L/min,

”4' ser these conditions, matrix interferences are minimal and detection
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limits are comparable to those reported in other I1CP
investigations.

The "optimized" torch has since been used by a number
of outside investigators (17-19) who report that it can indeed
be used for real samples and, even more importantly, is extremely
convenient when organic solvents ﬁust be employed (18,19). From
these reports, the use of organic samples requires the plasma
supported by the optimized torch to be operated at somewhat higher
RF power levels - approximately 700 to 1000W. Under these conditions,
carbon deposition is reportedly minimal and plasma stability is
excellent,

It is appropriate to question whether torch miniaturisation
and optimization wmight not profitably go hand in hand. From recent
studies (16))optimized torches of reduced size perform no better
than their larger counterparts, at least when sustained at radio-
frequencies in the 27-40MHz range. Perhaps operation at higher

frequencies (9) will alter this situation.

EXTERNALLY COOLED TORCHES

A clear alternative to the foregoing approaches is the use
of externally cooled ICP torches, Presumably, if the torch could
be cooled internally or externally by a relatively inexpensive gas
(e.g. air) or by a more effective cooling medium (e.g. water) the
total argon flow to the plasma could be vastly reduced, This
approach has been explored by a number of researchers and points
the way toward some of the most promising developments in high-
efficiency ICP torch design,

Water-Cooled Torches

The first example of a water-cooled torch was reported by Britske
et al. (20) who supported a 40 MHz, 4kW plasma on as little as

4L/min of argon. The torch was unusually large (40mm i.d.) and was
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-: found to be effective for rare-earth determination. However, end-on
. viewing was required.
..
The water-cooled torch of Kornblum, et al. (21) dramatically
- required a total argon flow of approximately 1L/min and an RF
- N —————t—
b generator power of only 700W (cf. Table 1). However, interferences
-
f from Al, Na and phosphate were noted and detection limits were
) disappointing (cf. Table 2). The authors attributed the poor
" detection limits to the inability of the low-power plasma to accommodate
L~
'S more than 0.1L/min of aerosol gas flow, However, a later study (22)
)
3\ employed the same plasma with an efficient Babington-style nebuliser
and yielded little improvement in sensitivity.
j In contrast, the water-cooled torch of Kawaguchi et al. (23)
i was operated at relatively high radiofrequency power (1000-1800W)
'j and with a somewhat modified design. Under these conditions, matrix
interferences were reduced (c¢f. Table 3) and detection limits
:J dramatically improved (cf.Table 2)., Later work by the same authors
: (24) employed the same kind of top-inlet water-cooling system but
. substituted for the original three-tube torch a 2-tube design which
) was surrounded by a silica cooling jacket, The resulting plasma was
,? found to be stable at 4L/min of coolant gas but required an RF power
-
: of more than 1100W. The excitation temperature is unusually high
; (7000K) and matrix interferences are reportedly low, The design has
] a distinct advantage over alternative water-cooled systems in that
-
: emission can be viewed in a side-on fashion without requiring light
“ .
= to pass through the torch itself,
-
» Air-Cooled Torches
One of the major difficulties with the design and use of a
; water-cooled torch is the incidence of gas bubbles forming in the
. cooling water (22). When such bubbles form, water flow can be
'L interrupted, resulting in torch devitrification or melting.
‘ Obviously, no such problem ariscs when the torch is air-cooled. To
~
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23
:: promote cffective air cooling, Ripson et al. (23) designed an
:: unusual load coil constructed of twe plates of watcer-cooled copper.,
Five spaced inlet peotts in this modified coil then dirvected
:? a high-velocity stream of air (50L/min) at the outside of an
4
o~ 18-mm torch. Unfortunately, at the relatively low arpon flows
.
;} required (1L/min), the plasma teilflame was unstable unless an
extended outer tube was employed. As a result, emission had to be
:i viewed through the quartz tube, an obvious disadvantage. Nonethcless
<
:: detection limits (cf.Table 2) were respectable and interferences
“e
.0

(cf. Table 3) were minor. In later studies (26-28) the same authors

[
4
[

compared their air-cooled plasma to a water—cooled unit similar to

: that of Kawaguchi, et al. (24). Using a combined empirical/theoretical
zs approach, they derived power balances for both conventional and

i‘ externally cooled ICP torches. F?om these calculations, most of the
‘: energy in a conventional plasma goes into heating the argon, except

:% for the small amount in a conventional torch which lies against the

(s

:‘ quartz tube and outside the plasma boundary. In contrast, air-
f\ cooled and water-cooled plasmas lose most of their heat by

-~ conduction through the torch walls; heat which is subsequently carried away
:i by the cooling medium. Of these two, the water-cooled device loses
:: more power through the wall and is therefore less power-efficient.

:‘ B These power balance calculations bear strongly on studies

-J mentioned earlier in this review. For example, the calculations

tj predict that an "optimized" plasma operating at 5L/min of argon
HJ should require 250W just to heat the gas to the plasma temperature

;3 (3500K) . In contrast, it was shown in the earlier study (1) that

125W was sufficient to sustain the discharge, Presumably, a large

fraction of the argon in the "optimized" torch passes outside

the plasma boundary, is not heated greatly, and serves merely to

Y

efficiently cool the torch walls.
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The authors also suggest that additional power in an

)

4

i

ICP beyond that required to heat the argon serves in large

measure to increase the degree of ionization in the plasma. This

o’

hypothesis might explain the relatively low excitation temperature

s
A S

reported by Weiss (7) and the poorer detection limits of Kornblum (21)

than those of Kawaguchi (23) who operated his water-cooled torch at

L AALLS

higher power levels.

r
.

W, Using these findings in a more directly analytical study (28),

- the same authors compared directly the air-cooled and water-cooled

) torches, Optimizing torch dimensions in a univariate manner, and
L 2 "
. using signal-to-background ratio as the optimization criterion,

:‘:' each torch was modified (cf. Table 1); in & number of subsequent analytical
:E studies, the air-cooled torch was found generally to be superior.
'-: Although the water-cooled device is more immune to changes in input
i radiofrequency power and although the air-cooled torch is somewhat
':._'. more temperamental, requiring solvent to be aspirated continuously,

i the air-cooled torch did not suffer from salt build-up and yielded

::: better detection limits and lower matrix interferences. Unfortunately,

detection limits were still inferior to those of a conventional plasma

';'. and neither torch functioned particularly well when fed an organic~

X
':.: containing aerosol. Moreover, both torches required viewing through
: the tube wall, a factor which could lead to long-term drift and -
; instability in working curves.
Y

:J CONCLUSIONS

2 Tables 1-3 documentandcompare different torch types which 1
have been reported for high-efficiency ICP use and the analytical ‘
; characteristics that they yield. From these data, several conclusions
: arise. First, for the near term, the "optimized" or miniaturized torches
i offer the best solution for ICP operation at reduced RF power and
" coolant-gas flow. Of these two alternatives, the 13-mm reduced~size
w torch is the more proven and can therefore be used with greatest

&
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confidence. However, such a torch requires a modification in the
d‘."
') load coil supplied with most ICP power generators; although this
iy

-

change is simple,it might not be undertaken by many users. In

.;. contrast, the "optimized" torches have not been used as widely, but can be
::’:: directly installed in a commercial unit. An optimized torch similar
R 1]
;_:: to that reported in the literature (11) is now commerically available

i (29) and documentation on its use should be forthcoming, Future
‘ _-:‘ developments in torch design will no doubt see higher frequencies

'

-’: being employed with miniaturised torches (9). Such systems would

. )

ryYz
<)
]

be especially useful in detection systems for liquid chromatography,

wvhere low-flow and minimal atomic dilution are required. Obviously,

‘:.q interfacing with a mass spectrometer has similar requirements.
E:% For dramatic reductions in applied radiofrequency power or
‘.:3 argon flow, external cooling seems a necessity. Of the two
alternatives already described in the literature, water-cooling seems

%::: inferior to air-cooling (28). To render air-cooling more efficient,
:f:: one might expect to see in the future outer torch tubes of higher
':.‘:: thermal conductivity. For example, BeO is a material long used in

! ion laser tubes because of its high thermal conductivity and low
'{.;. electrical conductivity. Such a material would seem to be ideal for
:\; the construction of externally cooled ICP torches. Alternatively,
’::: = radiative cooling itself might be employed in the future for an

ultra-low flow ICP. In the work of Kawaguchi, et al. (23), it is
stated that a coolant water flow of 2.5L/min is necessary to stably
cool a quartz ICP torch; as a result, the water is increased in
temperature 2-5C. From these data, it can be calculated that the

water must carry away between 350 and 850W. These values are

confirmed by the findings of Ripson and de Galan (26).
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To effectively dissipate this 350-800VW radiatively, a
plasma torch would obviously have to reach a higher temperature
than that expected of a conventional unit, Equation 1 can be

used to calculate this necessary temperature.

P = SESoT“ M

In equation 1, P is the amount of power to be dissipated
radiatively, S is the surface area of the radiator, €, is the
emissivity of the radiating substance, 0 is the Stefan~Boltzmann
constant, and T is the radiator temperature. For a plasma torch
of 18mm diameter and a radiating length of 5cm, equation 1 shows
that a temperature of 1400K would have to be reached to
dissipate 625W, a number expected to be reasonable for such a
system. Clearly, such a temperature can be readily reached by a

number of ceramics conveniently available. Such a radiatively

cooledtorch is now under development in our laboratory,
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